UUCMS. No.

B.M.S. COLLEGE FOR WOMEN BENGALURU -560004

I SEMESTER END EXAMINATION – APRIL - 2024

M.Sc. MATHEMATICS - REAL ANALYSIS (CBCS Scheme – F+R)

Course Code: MM102T Duration: 3 Hours

Instructions: 1) All questions carry equal marks. 2) Answer any five full questions.

- a) Show that x² ∈ R[x²] on [0, 1].
 b) If P* is a refinement of a partition P of [a, b], then show that
 L(P, f, α) ≤ L(P*, f, α) ≤ U(P*, f, α) ≤ U(P, f, α)
 c) Prove that if f ∈ R[α], then −f ∈ R[α] on [a, b].
- 2. a) Prove that if f ∈ R[α] on [a, b], then |f| ∈ R[α] on [a, b]. Also give an example of a function f such that |f| ∈ R on [0, 1] and f ∉ R on [0, 1].
 b) Prove that if f is monotonic and α is continuous on [a, b], then f ∈ R[α] on [a, b].
 c) If f ∈ R[α] on [a, b], f ∈ [m, M] and φ is a continuous function on [m, M], then prove that φ(f(x)) ∈ R[α] on [a, b].

(4+5+5)

(5+5+4)

OP Code: 11002

Max. Marks: 70

3. a) If f is continuous on [a, b] and α is monotonic on [a, b], then prove that

$$\int_{a}^{b} f d\alpha = f(b)\alpha(b) - f(a)\alpha(a) - \alpha(\xi)[f(b) - f(a)]$$

where $\xi \in (a, b)$.

b) Show that a function of bounded variation on [a, b] is bounded.

c) Calculate the total variation function of f(x) = x - [x] on [0,2], where [x] is the greatest integer not exceeding x.

(5+4+5)

4. a) Prove that a series of functions $\sum f_n$ defined on [a, b] converges uniformly on [a, b] if and only if for every $\epsilon > 0$ and for all $x \in [a, b]$, there exists an integer N such that $|f_{n-1}(x) + f_{n-2}(x) + \dots + f_{n-1}(x)| < \epsilon \quad \forall n \ge N \qquad n \ge 1$

$$|J_{n+1}(x) + J_{n+2}(x) + \dots + J_{n+p}(x)| \le \epsilon, \quad \forall \ n \ge N, \quad p \ge 1.$$

b) If $\{f_n(x)\}$ is a sequence of functions converges to f(x) defined on [a, b] and $M_n = \sup_{x \in [a,b]} |f_n(x) - f(x)|$, then prove that $\{f_n(x)\}$ converges uniformly to f(x) on

[a, b] if and only if $M_n \to 0$ as $n \to \infty$.

1

BMSCW LIBRARY

- c) Show that $\{nx \ e^{-nx^2}\}$ is not uniformly convergent on [0,1].
- 5. a) Let {f_n(x)} be a sequence of differentiable functions on [a, b] such that {f_n(x₀)} converges for some x₀ on [a, b]. If the sequence {f'_n(x)} converges uniformly on [a, b], then show that {f_n(x)} converges uniformly to a function f(x) on [a, b] and lim f'_n(x) = f'(x).
 b) Suppose f_n → f uniformly on [a, b] and if x₀ ∈ [a, b] such that lim f_n(x) = a_n for n = 1, 2, 3, Then prove that

 (i) {a_n} converges
 (ii) lim lim f_n(x) = lim lim f_n(x).
- 6. a) Define a k −cell in ℝ^k. Prove that every k −cell is compact.
 b) Prove that every infinite subset of ℝ^k has a limit point in ℝ^k.
- 7. a) Suppose f maps an open set E ⊂ ℝⁿ into ℝ^m and if f is differentiable at x ∈ E. Then prove that the partial derivatives D_jf_i(x)exist and f'(x)e_j = Σ^m_{i=1}D_jf_i(x)u_i (1 ≤ j ≤ n).
 b) If φ: X → X is a contraction mapping on a complete metric space X then prove that φ has a unique fixed point.
 - c) If $T_1, T_2 \in L(\mathbb{R}^n, \mathbb{R}^m)$ then prove that
 - (i) $||T_1 + T_2|| \le ||T_1|| + ||T_2||$
 - (ii) $\|\alpha T_1\| = |\alpha| \|T_1\|$

(4+6+4)

(14)

(5+5+4)

(7+7)

8. State and prove the implicit function theorem.
